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Abstract--A method is presented for measuring the phase density distribution at a cross-section of a 
gas-liquid flow system. The method utilizes the information carried by measured fluences of 
scattered fast neutrons. Reconstruction of the local density distribution is viewed as an inverse 
problem and a numerical method is developed for solving this problem. The physical and practical 
aspects of the problem are considered and some numerical and experimental results are presented. 

1. I N T R O D U C T I O N  

The behaviour of a two-phase system depends to a large extent on the manner on which the 
two phases are distributed in the system. Phase distribution (or equivalently flow regime), 
affects the interfacial and wall transfer of mass, momentum and heat. It also affects the 
structure of the average conservation equations used in separated flow models to describe the 
dynamics of the two phases. The conservation equations are coupled through interfacial 
transfer relationships for mass, momentum and heat as discussed, for example, by 
Banerjee & Chan (I 980). These models are needed for the analysis of two-phase systems 
when departures from homogenous equilibrium flow are important. For development of such 
models, measurement of local mixture density (or void fraction) is desirable. 

Existing techniques for phase distribution measurements can be divided into two 
categories: intrusive (probe-based) or nonintrusive (usually radiation-based). Intrusive 
methods such as impedance probes, hot film anemometry, microthermocouples and optical 
probes, though they may have fast response and relative simplicity of operation, cause flow 
disturbance. Light transmittance and scattering techniques can also be used, but in addition 
to their incapability of penetrating metallic walls, they are expensive and difficult to apply. 

Radiation techniques for phase distribution measurements depend either on attenuation 
or scattering of the penetrating radiation. Techniques based on attenuation provide an 
estimate of the chordal void-fraction across the radiation path. A set of chordal void- 
fractions obtained at different intersecting radiation paths is then unfolded to obtain the 
phase distribution as shown by Zakaib et al. (1978) and Hau & Banerjee (1981). This 
process requires multiple exposure of the test section to the radiation source. Scattering 
techniques depend on the fact that, in a gas-liquid flow, only the liquid phase scatters 
radiation at a rate proportional to the phase content. Gamma-ray scattering techniques have 
been explored for phase distribution measurements, see for example Kondic et al. (1983). 
Since gamma-rays interact with the electrons of the matter, they may be more sensitive to 
the flow-containing walls (usually metal) than to the flow itself. Consequently, they have 
poor sensitivity when applied to high pressure systems. On the other hand, neutrons, 
particularly those of high energy, are more affected by the flow material than by the pipe 
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metal and have higher interaction probability with hydrogeneous flow than gamma-rays. 
Therefore, fast neutrons are more suited for application in high-pressure systems and are 
expected to provide better sensitivity in transient measurements than gamma-rays. 

Powerful 14-MeV neutron generators have become relatively inexpensive and readily 
available. They have been used for time-of-flight flow measurement (see Perez-Griffo et al. 

1982) among others. This ready availability of equipment, coupled with the potential 
sensitivity of a neutron scattering technique, have motivated us to develop a method for 
cross-sectional phase distribution measurements. Since many interesting gas-liquid flows 
have a fluctuating or transient character, we decided to develop a technique based on a short 
single exposure of the test section. The single-exposure neutron tomography (SENT) 
technique is described in detail in Hussein's thesis (1983) and preliminary information and 
some experimental details have been presented by Hussein et al. (1983,1984). This paper 
discusses the theoretical aspects of the technique and presents some experimental and 
numerical results. The technique is briefly described below as a prelude to the theoretical 
aspects of the problem. 

Figure 1 shows a schematic of the proposed SENT technique. A test section of the 
two-phase flow is exposed to a beam of 14-MeV neutrons, while a set of detectors 
surrounding the test section is used to measure the energy spectrum of the scattered 
neutrons. From the measurements, the void fraction (or equivalently the liquid fraction) 
inside each of the cells of a fictitious mesh constructed in the exposed section is to be 
determined. In the present work steam-water flow is considered; however, the SENT 
technique can be applied to most gas-liquid flows. Because of the unique relationship 
between the energy and angle of single elastic scatterings by the hydrogen in the flow stream, 
the energy of the detected neutrons provides information primarily on the location of water 
in the test section. On the other hand, the magnitude of the detector response provides 
information on the amount of water. Therefore, it is possible in principle to reconstruct the 
void distribution from the measured detector responses. The problem may be viewed as 
determining the unknown void (or liquid) fractions in the N cells of the fictitious mesh shown 
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Figure 1. Schematic configuration of the S E N T  technique. 
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in figure I. Then at least N independent measurements are needed in order to obtain the N 
unknowns. This is an inverse problem since one is trying to obtain a set of parameters (void 
fractions) from a set of results (detector responses). Functional analysis allows this inverse 
problem to be approached systematically, as shown by Hussein (1983). Such an approach 
elucidates the essential difficulties. Once these difficulties are identified and the strategy for 
solving them is established, then the physical and numerical details can be worked out. The 
mathematical fundamentals of the SENT inverse problem are outlined in section 2, while 
section 3 discusses the physical aspects. The mathematical and physical aspects are 
implemented in a numerical algorithm presented in section 4. The experimental techniques 
used for obtaining the required measurements are described in section 5. The application of 
the SENT technique for reconstructing the phase distribution for different flow regimes is 
illustrated in section 6. 

2. THE INVERSE PROBLEM 

In order to define the inverse problem, one has to define first the direct (or forward 
problem). As defined by Chadan & Sabatier (1977), the direct problem is the mapping of a 
set of theoretical "parameters" into a set of experimentally measurable "results." Solving 
the direct problem is then to obtain "'computed results" from given "parameters." Converse- 
ly, obtaining the "'parameters" from given measured "results" is called solving the inverse 
problem. 

Clearly, the SENT problem is an inverse problem where the sought theoretical 
"parameters" are the local void fractions at designated cells in the test section, and the set of 
"results" consists of the measured scattered neutron fluences. Detailed functional analysis of 
this inverse problem guided by the analysis of Sabetier (1978) is given in Hussein (1983). 
Here only the essential aspects that aid in the practical solution of the problem are 
presented. 

The first step in solving an inverse problem is to construct the direct problem, otherwise 
no solution to the inverse problem can be found. In other words, one has to find a physical 
model that relates the theoretical "parameters" to the measurements. Once this is done, the 
direct mapping can be constructed. 

The direct mapping of the SENT problem can be defined as 

m: p---, S, [1] 

where p is a vector representing the sought water fractions: 

P ffi [Pt,P~ . . . . .  Pt . . . .  PN] r, [21 

where p~ is the water fraction in the ith cell of the mesh of figure 1, N is the number of cells in 
the mesh and S is a vector constructed from the known measurements: 

S - [S,,$2 . . . . .  S, . . . . .  Su] r, [3] 

where Si is the ith measurement and M is the number of available measurements (M is 
assumed to be greater than or equal to N). 

Obviously one cannot construct the mapping m, unless the nature of the "results" are 
precisely defined. The detectors shown schematically in figure 1 would count the number of 
neutrons scattered by the flow material in the test section. If one considers a measurement as 
the total number of neutrons arriving to the detector within a specified time interval, the 
vector p would then be related to the measurements through a complicated physical model 
(the neutron transport equation) and no simple formulation of the mapping m could be 
possible. A simple expression for m is desirable in order to facilitate the construction of its 



4 E. M. A. HUSSEIN el al. 

inverse. As we will show, by imposing some physical constraints and by selective measure- 
ment of the scattered neutrons, it is possible to obtain a matrix formulation of the direct 
mapping. This is provided by the single scattering model (SSM) of the problem. The SSM is 
discussed in detail in section 3. 

With the mapping being presented by a matrix, relationship [1 ] can be rewritten as 

s = A p, [ 4 ]  

where A is an (M x N) matrix that represents the direct mapping of the SENT problem. 
In practical applications, the vector S is known approximately since it is obtained from 

measurements. Let S denote its approximate value. In such cases, one can speak only of 
finding an approximate solution of the equation 

= ~ .  [5] 

Usually, one cannot take for the approximate solution the result p ffi A-IS, for two reasons: 
First, such a solution may not exist in the set of solutions defined by the closed interval [0, I ] 
that contains all physically possible water fractions. Second, even if such a solution does 
exist, it may not possess the property of stability, that is, a small change in S may result in a 
large change in p. However, with the aid of supplementary information on the nature of the 
solution, one can select an appropriate "quasisolution." 

One can obtain a quasisolution by minimizing, for example, the residuals of the problem 
as expressed by the cost function D ~, defined by 

O~ = w~ S ~ -  aqpj , 
i-I j - I  

[6] 

where ao's are elements of the matrix A and w;'s are the reciprocals of the measurement 
variances. The quasisolution, p, that minimizes the above function is called the "least- 
squares" solution and is given by 

~ ( A T W A ) - I A T W ~  ' [7] 

where A r is the transpose of A and W is a diagonal matrix whose elements are the w~'s. 
The physical constraint that the vectors p must be contained in the closed interval [0,1 ] is 

not necessarily met by the "least-squares" inverse mappings. 
In order to construct mappings that result in physically acceptable solutions, one can rely 

on the so-called "regularization" methods to construct "constraint" mappings. There are 
many regularization methods, and a good survey of these methods can be found in the book 
by Tikhonov & Arsenin (1977). 

In the SENT problem the "constraint" matrix is constructed such that the set of 
solutions is bounded by a weak upper bound of the solution and is given by 

q , = m i n S J + a J ,  aj ,¢O,  [8] 
j a~ 

where qs is the ith element of the weak upper bound vector q,¢i is the standard deviation of 
the measurement S~ and aj~'s are elements of the matrix A that defines the direct mapping m. 
The quasisolution is then constructed as shown by Hussein (1983) as 

~ [ATWA + ( ' r ' / / 'V)Q-2] - IATW~,  [9] 
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where A and W as defined following [6], while O is a diagonal matrix whose elements are the 
elements of the weak upper bound vector q whose elements are defined by [8]. The 
parameter r 2 is called the regularization parameter. The method used for deriving [9] is 
given in detail by Hussein (1983) following closely the approach of Bun-us (1965). Miller 
(1970) had shown that the solution ~ of [9], is bounded and stable. However, there is no 
guarantee that the solution lies within the interval [0,I]. Nevertheless, by choosing the 
appropriate value of r 2 one can contain the solution within this interval. A value of r 2 equal to 
N appears to achieve this goal as will be shown in section 6. 

The error associated with the quasisolution, ~, can be estimated from 

13 - p = (molto -- l)p + mffl~, 

with 

m~ffiA, 

- m o l g ,  

where p is the "exact" solution of the problem, m is the direct mapping, mff ~ is the 
constructed inverse mapping and ~ is the error associated with the measurements. Since p is 
not known, the right-hand side of the above equation can be expressed in terms of b resulting 
in the relationships 

13 - p = (1 - m-lm0)~ + m-re. [lOl 

Since mff I, rather than m-l, is constructed in the solution, the former can be used for m-~ in 
the above relationship, resulting in the error mo i~ in the solution. If  ~ is taken as the vector of 
the standard deviation of the measurements, then mo~ would be the random error associated 
with the solution 13. A "bias" or resolving error may also result if the round-off error affects 
the inversion process. This error is expressed by (1 - mo~m)~. A third type of error might 
exist if the direct mapping is not exact; that is, if the physical model of the problem does not 
reproduce exactly the "error-free" measurements, due to physical approximations. This is 
called physical error. 

For the problem considered here, the resolving error is a round-off error and can be 
estimated for the method used for matrix inversion, given the precision of the computing 
machine. The physical error becomes significant only if the single scattering model used as a 
direct mapping ceases to be valid. The domain within which the model can be used is defined 
in the next section, together with a worst error estimate of the physical error. Therefore, the 
only error to be routinely calculated in the SENT problem is the random error m~ ~. 

3. PHYSICAL MODELING 

As the previous section emphasizes, it is essential to construct the direct mapping in order 
to solve the inverse problem. This section shows how the direct mapping is developed from 
physical principles. 

3.1 Fundamentals 
In order to be able to develop an adequate physical model for the SENT technique, one 

has to examine the fundamental theory upon which the technique is based. The technique, as 
presented in section 1, utilizes the scattering of 14-MeV neutrons for providing information 
on the amount and distribution of the test section material. Therefore, the basis of the SENT 
technique is the neutron scattering process. The scattering magnitude for a gas-liquid flow 
system depends on the density and composition of the liquid phase. For a steam-water flow, 
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the scattering elements are hydrogen and oxygen, and the density inside a scattering cell can 
be taken as the steam-water mixture density in the ceil. For 14-MeV neutrons, the scattering 
process is mainly elastic; since scattering by hydrogen is always elastic and the inelastic 
cross-section of oxygen is negligible compared to its elastic cross-section (see Hughes & 
Schwartz 1958). Therefore, one can claim that the SENT technique, when applied to a 
steam-water flow, relies essentially on elastic scattering. 

The kinematics of an elastic-scattering event for a neutron can be described by invoking 
laws of conservation of energy and linear momentum (see for example Henry 1975), leading 
to the relationship: 

1 
E, = :Eo [ (1  + v) + (l  - V) cost,], I l l ]  

where 

V = [(A - 1)/(A + 1)] 2 , 

and 

cosO= (A cos~ + 1)/(A 2 + 2A cos~b + 1) 1/2, 

with A being the mass number of the scattering nucleus, E0 the energy of the incident 
neutron, and Eo is the energy of the neutron after being scattered by an angle 0 in the 
laboratory system (or ~ in the center-of-mass system). Equation [I1] shows that there is a 
unique relationship between the energy and angle of scattering, for a given scattering 
material. Figure 2 shows this relationship plotted for some elements of interest ~H, 2H, ~2C 
and ~60. For a steam-water system, scattering is caused by both ~H and ~60 nuclei, which 
have different energy-angle relationships. However, as one can see from figure 2, if forward 
scattering at energy less than (15/17) Eo is monitored, only scattering by hydrogen would be 
observed and no oxygen contribution would result. The (15/17) ratio is obtained from 
relationship [11] for oxygen (A - 16) at 0 - 90 ° (larger values of 0 lead to backward 
scattering). By monitoring only hydrogen scattering, one should be able to determine the 
location of the scattering material (steam-water) from the angle corresponding to the energy 
of the scattered neutrons. This unique angle-energy relationship is utilized in the SENT 
technique to link the energy of the measured (scattered) neutrons to the location of the 
material in the test section; keeping in mind that neutrons of energy larger than 12.35 MeV 
( -14  MeV x 15/17) are excluded since they correspond to oxygen scattering. 

Although [ 11 ] provides a useful relationship between the energy and angle of scattering, 
it does not predict the probable scattering angle. Such prediction requires the use of quantum 
mechanics combined with measurements. However, cross-section libraries report for each 
element a set of Legendre coefficients that can be utilized to estimate the probability of 
scattering to an angle 0, P(O), as follows: 

~_ 1 (2L + l)fL(Eo---* E)PL(cos-'O), P(O) ~ Z(Eo ---" E ) / Z , ( E )  L-o 2 [121 

where Z(E0--- E) is the transfer cross section from E0 to E, Z,(E) is the scattering cross 
section at E, fL is the Lth Legendre polynomial, estimated at cos-10. The above relationship 
assumes isotropic scattering in the azimuthal direction, which is a reasonable assumption for 
many materials. The summation in the above equation should be performed to the highest 
available order particularly for hydrogenous materials, to provide an adequate estimate for 
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the scattering probability. The number of scattered neutrons is proportional to both the 
probability of scattering and the amount of available material. Therefore, knowing the 
scattering probability enables the estimation of the amount of scattering material by 
measuring the number of neutrons scattered. 

Equations [11] and [12] are fundamental to the SENT technique. While the first 
equation relates the energy of the measured scattered neutrons to the location of the 
scattering material, the second equation can be used together with the measured number of 
scattered neutrons to provide an estimate of the amount of material present. A set of 
measurements covering the test section material can be then used to calculate the density 
distribution in the test section. However, one should keep in mind that the above two 
equations consider only single scattering. Therefore, if one measures neutrons that have 
suffered more than one collision before reaching the detector, one would not be able to utilize 
relationships [11] and [12] to relate the measurements to the location and amount of the 
scattering material. Therefore, minimizing or correcting for the contribution of multiple 
scattering to the measurements is a main concern in the SENT technique. This aspect is 
discussed in subsection 3.3. Before proceeding to discuss how these two fundamental 
equations are used to construct a physical model of the SENT problem, one should note that 
relationship [ 11 ], as plotted in figure 2, shows that the idea of SENT technique can be used 
not only in steam-water systems but in many other systems. For example, for a heavy water 
boiling two-phase flow, one would utilize the appropriate energy-angle relationship for 2H 
and excludes scattering by oxygen. For a multicomponent flow such as oil-steam-water 
flow, by monitoring backward scattering below the energy of (15/17)2Eo (see figure 2), one 
can estimate the amount of carbon available. This, in addition to the forward scattering 
information and the flow chemical composition, could be used to determine the phase 
content (see Hussein 1984). 

3.2 The single scattering model 
The physical model required for solving the SENT inverse problem relates the local void 

fractions to the measurements (the direct mapping). The fundamental equations [11] and 
[12] discussed above are used in this subsection to formulate this model. Let us first define 
carefully both the local void fraction and the measurements. 

The fundamental analysis, presented above, indicates that one is monitoring scattering 
by hydrogen. In a steam-water system, knowing the hydrogen content in a given volume 
leads directly to the mixture density in the volume, since the chemical composition is known. 
Therefore, in effect one is monitoring the steam-water mixture density. By dividing the test 
section into fictitious cells (see figure 3), the mixture's specific volume in a celij is given by 

(I/vj) = (I -- pj)(I/va) + pj(I/vL), 

where pj is the local liquid fraction in the cell and vL and vo are the liquid and vapour specific 
volumes, respectively. For many applications, vL is at least an order of magnitude smaller 
than vc and the first term in the above equation can be neglected. Then 

pj = vL/vj; [13] 

i.e., the local liquid fraction is equal to the ratio between the density of the steam-water 
mixture in the cell to its density if it was completely filled with the liquid phase (water). 
Therefore, the local water fraction, which is the complement of the local void-fraction, is 
proportional to the material density in the cell and can be used in conjunction with the 
fundamental relationships [11] and [12] to describe the physics of the neutron scattering 
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Figure 3. A fictitious mesh constructed in the test section and a typical neutron path. 

mechanism. The N water fractions in the fictitious mesh of figure 3, are considered as the 
elements of a vector p of dimension N that represents the unknowns in the SENT problem. 

The fundamental equations [11] and [12] indicate also that one has to measure the 
number of neutrons scattered by the hydrogen nuclei at a given energy. This can be obtained 
by measuring at a specific position the energy spectrum of the scattered neutrons, and 
excluding those energies that correspond to oxygen scattering. By dividing the measured 
spectrum into statistically appropriate energy intervals one can obtain a set of individual 
measurements, each corresponding to a particular scattering energy range (and conse- 
quently an angle interval) and each can be considered as an independent measurement in the 
SENT problem. By measuring the energy spectrum at another position one can obtain 
another set of independent measurements, since in the new position, new directions of 
scattering are observed. Therefore, the required number of measurements can be obtained 
by measuring the energy spectra of the scattered neutrons using a number of detectors 
located at different positions such that they monitor forward scattering, as required by the 
fundamental equations [ 11 ] and [ 12]. In addition to excluding energies that correspond to 
oxygen scattering, one has also to discard energies that result in scattering directions that do 
not correspond to scattering from inside the test section. More details on the design and 
arrangement of the detection system are given by Hussein et al. (1984). The collected set of 
measurements are arranged into an M-dimensional vector S whose elements are the 
individual measurements obtained from the energy spectra. For each element of the vector S, 
the corresponding energy range and the detector position have to be defined, to enable 
relating the energy to the direction of scattering from the test section. The dimensions M of 
the vector S must be larger than or equal to the dimensions of the unknown vector p, to avoid 
underdetermining the SENT problem. 

The above definitions of the vectors p and S require the physical model relating p to S to 
be an M x N matrix. Let this matrix be A. Then 

S -/ko. 

An element a~j of A then defines the contribution of cell j to the measurement S;. This 
definition of the matrix A enables the establishment of the physical model required for 
calculating the contribution of a cell j to a measurement S~. To be consistent with the 
physical constraints of the fundamental equations [11] and [12], it is assumed that the 
measurements record only neutrons that have suffered a single collision inside the test 
section. This assumption is examined later. By following the path of a source neutron that 
suffers a collision in cellj and scatters towards the detector that records the measurement Si 
(see figure 3) one can estimate the contribution of this neutron to $1, and consequently aij, as 
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follows: 

aii= [number of incident source neutrons] 

x [probability of reaching cell j ]  

x [probability of scattering by an angle 0 that corresponds to the 
energy at which S~ is recorded] 

x [probability of reaching the detector]. 

[14] 

The probability of a source neutron reaching cell j without being scattered or absorbed in 
preceding cells depends on the density of these cells, and can be expressed as 

probability of reaching cell j = exp [ -  X0 ~ "  Xkpk], k 

where Z0 is the total cross-section of a source neutron in water, xk is the distance the neutron 
travels in a preceding cell k and Pk is the water fraction in the cell. Note that Zopk represents 
the total cross-section of a source neutron crossing a cell of water fraction Pk. The probability 
that a neutron reaching cell j scatters by an angle 0, in order to contribute to the 
measurements Si, is given by P(O) (see [ 12]). The probability that a neutron being scattered 
at cell j will reach detector where S~ is recorded is given by: 

oxp( / 
where Z,. is the total cross section in water estimated at the detection energy, corresponding to 
S~, Yt is the distance a neutron travels in a cell I on its way towards the detector, Pt is the water 
fraction in the cell and R~j is the distance between cell j  and the detector where S~ is recorded. 
The (I/2~') term accounts for the azimuthal direction, where isotropic scattering is assumed, 
while R~ accounts for neutron divergence. 

Combining the above three probabilities together, one obtains: 

a~j = Wjexp[-~,o ~ Xkpk]P(O) 

= O, if cell j does not contribute to S~, 

[15] 

where Wj is the number of source neutrons reaching cell j and the provision of setting a~j 
equal to zero takes care of the case when cell j is not seen from the position of the detector 
where Si is recorded. This indicates that if a cell j is not seen by any detector, a o would be 
equal to zero for all values of i and the matrix A would be singular. To avoid this, one has to 
make sure that each cell is seen by at least one detector. 

One has to note that the physical model presented by the matrix A, whose elements are 
defined by [15], assumes that the neutron source is a well collimated neutron beam of a 
uniform profile. Corrections for the source angular and intensity distribution can be 
introduced easily through the Wj terms. Also, the fact that S~ is estimated over an energy 
range, rather than a specific energy, and consequently a range of scattering angles, rather 
than a specific angle 0, is not taken into consideration in the above model. However, this can 
be overcome by dividing the angular range into a number of intervals and estimating the 
corresponding element of the matrix A using a number of neutron paths, each corresponding 
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to one of the angular intervals. An angular interval of 0.5 ° appears to be sufficient for this 
purpose, as shown by Hussein et al. (1983). The model also assumes that the material inside 
any cell j is a homogeneous material of density (=pJvL), where vL is the liquid specific 
volume. Therefore, the model is more accurate for small ceils than for large ones. The results 
of this single scattering model (SSM) are compared to the more elaborate Monte Carlo 
simulations in the following subsection. The Monte Carlo simulations were carried out using 
an approach similar to that previously reported by the authors, Ba'nerjee et al. (1979). Note 
that the Monte Carlo simulations provides a more accurate direct mapping, but it does not 
solve the inverse problem. 

3.3 Verification o f  the S S M  
The two main sources of error in the SSM, as indicated above, are the contribution of 

multiple scattering and the effect of material homogenization in the cells. These two sources 
are investigated by comparing the results of the SSM to those of Monte Carlo simulation 
where multiple scattering is accounted for and no cell homogenization is done. 

3.3.1 Multiple scattering. The average distance a neutron travels before suffering a 
collision is given by its mean-free path in the material. Therefore, by limiting the size of the 
test section to the order of magnitude of the mean-free path, the probability of multiple 
scattering would be significantly reduced. Moreover, since the average energy loss per 
neutron collision with hydrogen is half the original energy, the multiscattered neutrons 
would tend to score into the lower energy range of the detector. Therefore, by discounting 
low-energy neutrons from the measurements used in the SENT technique, the contribution 
of neutron multiple scattering is further reduced. As shown by Hussein et al. (1983), an 
energy of 3.5 MeV is recommended as the threshold energy below which measurements 
should be discarded. This energy is one fourth of the source energy (14 MeV) and 
corresponds to the average energy of a source neutron that suffers two collisions with 
hydrogen. 
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Figure 4. Detectors arrangement used in the Monte Carlo simulations. 
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Let us consider the case of a test section of a diameter equal to one mean-free path of the 
14-MeV source neutrons, i.e. around 100 mm. Multiple scattering is expected to be largest 
when the test section is completely filled with water. Consider a set of four detectors located 
at one side of the test section downstream of a 14-MeV neutron beam as shown in figure 4. 
For each detector, the energy spectrum of the scattered neutrons is observed within the 
energy intervals [10.5,8.2], [8.2,5.8], and [5.8,3.5] MeV, which correspond to [30,40], 
[40,50], [50,60] degrees of scattering, respectively. These relatively wide energy intervals 
were used in the Monte Carlo simulation in order to obtain good statistics at a relatively low 
computer cost. Table 1 shows the fluence of the scattered neutrons for these detectors within 
the three energy (angular) intervals as calculated by the Monte Carlo method and the SSM. 
In the latter, 21 neutron paths (one per 0.5 ° of scattering) were used for each detector. Both a 
4 × 4 grid and an 8 × 8 grid were used in the SSM in order to show the effect of the cell size 
on the model, since the detector fluence is calculated in the SSM by summing the 
contributions of the individual cells. As table 1 shows, the results of SSM lie within the error 
range of the corresponding Monte Carlo results, and reduction of the cell size seems to 
slightly improve the SSM results. For detection energies below 3.5 mcV (excluded in the 
SENT technique), the SSM results do not agree well with the corresponding Monte Carlo 
results. Low-energy neutrons are more susceptible to rescattcring than those of high energy; 
consequently a smaller portion of single-scattered low-energy neutrons succeed in reaching 
the detectors. On the other hand, some multiscattered neutrons may succeed in reaching the 
detectors at low energy because of the successive loss of energy in the scattering process. 
Therefore, the low-energy bands of the detectors are more influenced by multiple scattering, 
and the SSM is not adequate for estimating the neutron fluences at these energies. 
High-energy bands are also susceptible to multiple scattering effects, particularly by 

Detector 
Number 

1 10.5 - 8.2 

2 10.5 - 8.2 

3 10,5 - 8.2 

1 8.2 - 5.8 

2 8,2 - 5.8 

3 8.2 - 5.8 

4 8.2 - 5.8 

2 5.8 - 3.5 

3 5.8 - 3.5 

4 5.8 - 3.5 

Table I. Monte Carlo and single scatteringmodelfluences 
for a lO0-mm "fullof water"testsection 

MeV 1_.00 6 x Fluence (Negt rons /cmZ/source  neut ron)  
Scattering Monte 4 x 4 8 X 8 

Ener~ Interval Carlo Mesh Mesh 

22.96 22.89 23.51 
(5.66)* (0.3)+ (2.4)+ 

20.584 20.09 20.38 

(6.4) (2.45) (0.99) 

13.672 12.96 13.09 
(7 .88)  (5 .21)  (4 .26)  

37.413 

(4.7 
36.46 37.04 
(2 .55)  (1 .0 )  

42.654 
(5 .1  

40.16 40.81 
(5 .85)  (4 .32)  

33.797 

(4.5 
31.19 32.57 

(4.75) (3 .63 )  

20.791 

(3.6 
20.52 20.65 
(1 .30)  (0 .68)  

36.424 

(5.6 
35.77 
( . 80  

36.19 

(0.64) 

38.341 
{5 .7  

36.20 36.51 
(1.58) (4.78) 

28.696 28.04 28.29 
(5 .7 )  (2 .29)  (2 .32)  

* Fractional standard deviation (%) 

+ Fractional error relative to Monte Carlo (%) 
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Table 2. Relative weight of multiple scanefiN[ m a 100-ram "full of water" test section 

13 

Zp 11.1 9.1 7.4 6.1 4.4 3.9 

R 5.4 5.5 3.1 4.9 3.8 7.0 

Ep 

R 

- Neutron Energy Prior to Scattering, geV 

- (Weight of Rescattered Neutron/Total Weight of Scattered 
Neutrons) X i00 

neutrons that suffer the first collision with oxygen, causing small energy degradation, and 
reach the detector by further rescattering. (Note, neutrons that suffer a single scattering 
with oxygen reach the detector at energies above 12.35 MeV and are excluded from use in 
the SENT technique as indicated earlier.) The contribution of multiple scattering to the 
energy range [ 12.35,3.5] MeV, utilized in the SENT technique, is estimated from the Monte 
Carlo simulation by observing the weight of neutrons as recorded prior to their scattering in 
the test section; given that a source neutron has a weight of one. Table 2 shows the weight of 
rescattered neutrons relative to the total weight of scattered neutrons, noting that first 
collision neutrons prior to scattering have an energy equal to the source energy. The table 
shows that the rescattering weight is generally low and tends to increase at high energies, 
because of first collisions with oxygen, and at low energies, because of multiple scatterings 
with hydrogen. Since not all rescattered neutrons succeed in reaching the detectors because 
of their diverse angular distribution, the relative contribution of multiple scattering to the 
detector fluences is expected to be less than the relative weights of table 2. This argument is 
further supported by the fact that the SSM was able to predict the detector fluences 
reasonably well within the error band of the Monte Carlo results. Even if one conservatively 

takes the maximum deviation between the SSM results and the corresponding Monte Carlo 

results as the contribution of multiple scattering, this would not bc more than 5%, 

considering the more accurate 8 x 8 mesh results of table I. 
The above analysis was considered for a 100-mm diameter test section completely filled 

with water. For water fractions less than unity for this test section or for smaller diameter 

test sections, one can cxpcct the contribution of multiple scattering to be less than 5%, since 

less water is present. The analysis was considered for a flow at atmospheric pressure and at 
room temperature. At higher pressures the liquid density increases slightly, while at higher 

temperatures the neutron microscopic cross-section does not significantly change in the few 

MeV energy range in which the SENT technique is applied. Therefore, pressure and 
temperature may slightly affect the microscopic cross-section and consequently the scatter- 

ing process, but this can bc accounted for by adjusting the neutron cross-sections. 

In conclusion, for test sections of 100-ram diameter or less, the SSM is adequate since the 
contribution of multiple scattering to the detector responses is small and can bc ignored. For 
test section diameters more than I00 ram, the contribution of multiple scattering becomes 

more significant as the diameter increases. However, by collimating the scattered neutrons 
on their arrival to the detector, the contribution of multiple scattering can bc reduced, since 
multiscattcrcd neutrons reach the detector at angles different from that of single-scattered 
neutrons. Also, introducing corrections to the SSM to" account for the effect of multiple 
scattering would bc helpful. Therefore, the SENT technique potcntiaUy can bc extended for 

application to larger test sections. 
3.3.2 Homogenization. As discussed earlier, the detector response in the SSM is 

calculated by summing the contributions of individual fictitious cells constructed in the test 
section. Inside each cell, an averaged density is used in the calculations. This avcragc density 
is obtained by assuming that the material inside the cell is uniformly distributed, or in other 
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Figure 5. Inverted annular density distribution. 

words by homogenizing the material inside the cell. Therefore, one can expect that the 
smaller the cell size, the closer the average density to the actual density and consequently the 
more accurate the SSM. In order to study the effect of this homogenization process, let us 
consider the inverted annular density distribution of figure 5. One can see that if a 4 × 4 
mesh is constructed over the test section, some cells would be partially filled by water (to 
roughly z/3 of their volume in this example). Homogenizing the liquid and the void in these 
cells to produce a mixture of equivalent density would fill the void volume with the mixture 
while reducing the density in the liquid volume. Then, the void volume would act as a 
scattering medium while the amount of scattering in the liquid volume would be reduced 
because of the density reduction. Therefore, using the SSM for this mesh structure would 
result in some error. By refining this mesh structure the magnitude of error can be reduced. 

Table 3. Monte Carlo and single scattefingmodelfluencesfortheinverted 
annulardistribution off igure4 

.ev io__ ~ ~ ,i~,.co (~o.trona/~,'lao.;ce .cut,on) 
Detector S c a t t e r i n g  M o n t e  4 x 4 8 x 8 
Number Ener~ Interval C a~lo Mesh Mesh 

1 1 0 . 5  - 8 . 2  2 1 . 5 6 3  2 0 . 2 3  2 0 . 1 5  
( 5 . 1 7 ) *  ( 6 . 1 8 ) +  ( 6 . 5 5 ) +  

2 1 0 . 5  - 8 . 2  1 8 . 4 6 2  1 6 . 4 6  17 .28  
( 5 . 6 5 )  ( 1 0 o 8 4 )  ( 6 . 4 )  

3 1 0 . 5  - 8 . 2  4 . 8 2 2  7 . 5 3 2  1 3 . 0 9  
( 1 0 . 0 )  ( 5 2 . 4 7 )  ( 3 . 4 9 )  

1 8 . 2  - 5 . 8  13 .271  1 7 . 4 0  1 3 . 3 5  
( 6 . 2 5 )  ( 3 1 . 1 1 )  ( 0 . 6 0 )  

2 8 . 2  - 5 . 8  3 3 . 9 2 9  3 3 . 1 4  34 .00  
( 3 . 9 )  ( 2 . 3 3 )  ( 0 . 2 1 )  

3 8.2 - 5.8 27.537 26.32 27.28 

(4.5) (4.42) (0.93) 

4 8 . 2  - 5 . 8  9 . 1 2 6  1 1 . 1 9  8 .232  
( 7 . 4 ) ,  ( 2 1 . 8 4 )  ( 9 . 8 )  

2 5 . 8  - 3 .5  1 0 . 5 5  1 6 . 3 8  11 .90  
( 7 . 0 )  ( 5 5 . 2 6 )  ( 1 2 . 8 0 )  

3 5 . 8  - 3 . 5  28 .26  2 9 . 0 7  3 0 . 4 2  
( 5 . 0 )  ( 2 . 8 0 7 )  ( 7 . 6 4 )  

4 5.8 - 3.5 24.839 23.70 24.08 
(4.4) (4.59) (3.06) 

* Fractional standard deviation (%) 

+ Prectional error relative to Monte Carlo (%) 
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Table 3 shows the SSM results for a 4 x 4 mesh and the finer 8 x 8 mesh, compared to those 
of the Monte Carlo method. The improvement in the SSM results introduced by refining the 
mesh structure is clear. However, in order to determine the water fraction in the cells of an 
8 x 8 mesh, one would need at least 64 measurements, versus only 16 for a 4 x 4 mesh. 
Therefore, to improve the resolution of the SENT technique, one has to increase the number 
of measurements by the same order of magnitude as the desired improvement in resolution. 
One can notice that the effect of the mesh size on the SSM results is not as significant for the 
example of table 1 as that for the inverted annular flow regime of table 3. This is because the 
homogenization process in the "full of water" case has no effect, since the cells already are 
just filled with water with no void. The only improvement that would result by reducing the 
cell size in the full of water case would be due to the more accurate determination of the 
location of the scattering centers. Since the distribution of the material inside each cell would 
not be known, when the SENT technique is applied, it is desirable to use a fine mesh 
structure. The effect of using a coarse mesh on the reconstructed phase distribution is 
discussed in section 6. 

4. NUMERICAL ANALYSIS 

In section 2 the mathematical method for solving the SENT problem was discussed 
emphasizing the importance of constructing the direct mapping. The SSM, as shown above, 
provides an adequate direct mapping for the SENT problem. This makes it possible to 
implement the solution methodology of section 2 into a numerical algorithm. In this section 
this algorithm is developed, first for the ideal inverse problem where exact "error-free" 
measurements are assumed to be available, then for the applied inverse problem where 
statistical measurement errors are involved. The ideal inverse problem is used for testing the 
algorithm. Success in solving the ideal inverse problem does not necessarily guarantee a 
solution of the applied inverse problem. However, it provides insight into the nature of the 
inverse mapping involved and that could be helpful in solving the applied inverse problem. 

4.1 The successive approximation process 
In an ideal inverse problem, one can expect to find a mapping m -t that exactly inverts the 

forward mapping m; i.e., it satisfies the identify 

m(m-tS) = S, [16] 

for all admissible data S. Uniqueness would require that 

m-l(mp) = p, [17] 

for all admissible water fraction vectors p. The exact solution of the inverse problem is then 
given by 

a = m-IS. [18] 

Since the direct mapping for the SENT problem is represented by the matrix A whose 
elements are defined by [15], the inverse mapping is the inverse matrix A -~. However, as 
clearly shown by relationships [15], one has to know the value of the vector p, in order to 
construct the matrix A. In other words, in order to solve the SENT inverse problem, to find p, 
one has to known in advance the value of p so that the required inverse mapping can be 
constructed! 

To overcome this problem, one can adopt the successive approximation process (SAP). In 
this method, an approximation of the value of 9 is provided and used to construct an 
"approximate" direct mapping A which is then inverted to obtain A-t. The resulting 
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"approximate" inverse mapping maps the "results" vector S into a new solution p, which is 
used in turn to construct a new approximation for ,0, -1, and so on. 

The SAP is represented by 

Pk+l : A - l ( p k )  s ,  k : 0,1,2 . . . . .  [19] 

where k is the order of approximation and A-1 (Pk) indicates that the matrix A is constructed 
using the vector Pk. The natural next question would be that regarding the convergence and 
uniqueness of the solution. 

The convergence of the SAP is examined in appendix A which shows that contraction 
mapping of relationship [ 19] within the closed interval [0,1 ] is essential for convergence. The 
mathematical conditions required for obtaining a contraction mapping are also discussed in 
the Appendix. If the SAP meets these conditions it will converge to a unique solution within 
the closed interval [0,1 ] according to the fixed point theorem, as shown in the Appendix. The 
numerical examples shown in section 6 demonstrate the success of the SAP in solving the 
error-free problem, provided that all the approximations of p are kept within the closed 
interval [0,1 ] in order to satisfy the SAP convergence requirements. 

In the applied inverse problem the errors associated with the measurements make it 
difficult to keep the SAP within the [0,1 ] interval. However by applying the regularization 
process discussed in section 2, one would tend to bring the solution in any step of the SAP 
within the [0,1] interval. If after that the solution is still outside the [0,1] interval, one then 
should set the components of the solution that are greater than unity to unity and the 
negative ones to zero before starting the new SAP step. This is called the "adjustment" 
process and it ensures that the SAP maps the problem into the required closed interval [0,1 ]. 
One then has to test for the contraction of the SAP. If the SAP displays a contraction 
mapping then, as shown in appendix A, the problem will converge to a unique solution within 
[0,1]. Failure to obtain a contraction mapping within [0,1 ] would indicate either the solution 
exists outside the [0,1 ] interval or that an excessive regularization has been used such that 
the contraction nature of the mapping is destroyed. The former problem is usually en- 
countered, as will be shown in section 6, when the solution exists close to the boundaries of 
the [0,1 ] interval (i.e. when a "full of water" problem is encountered). Here, because of the 
error in the measurements, the quasisolution of the problem might be a little off the 
boundaries of the interval and attempts to contain a solution within the [0,1 ] interval usually 
fail. The near-linear approach discussed later can be used in such circumstances to reach the 
solution. Excessive regularization, by using a very large value of the regularization 
parameter, would produce solutions within a smaller subinterval of [0,1]. If the solution 
exists outside this subinterval, the SAP would not be able to reach it and a noncontraction 
mapping would result. A loose regularization, on the other hand, would produce solutions 
outside [0,1 ] but by applying the cut-off process one restarts the new SAP with a solution 
within [0,1]. However, this may require more iterations until the SAP is reasonably self 
contained within [0,1], then the problem could be expected to converge to its unique 
solution. 

One should mention that because of the errors in the measurements the quasisolution of 
the problem might contain components that are slightly off the [0,1] interval. This is 
tolerated by accepting a reasonable cut-off range, i.e. a reasonable margin outside [0,1 ]. A 
better quality of measurements or a larger number of measurements would result in a 
quasisolution that is closer to the exact solution. 

4.2 Physical conditions for contraction mapping 
In order to be able to solve the nonlinear SENT problem, it is required that the SAP 

meets the conditions of contraction mapping outlined in appendix A. These conditions are 

0 < ~ < a < l ,  [20] 
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where a is a positive number and/3 is the maximum distance in mean-free paths a neutron 
travels in any cell of the constructed mesh. Here, these conditions are examined in order to 
find their physical implications. 

The maximum distance (in units of mean-free path) a neutron travels in a given cell is 
that which it travels after scattering. This is because the neutron loses energy in the 
scattering process, and consequently its mean-free path decreases. Also, for a well collimated 
incident beam, scattered neutrons cross the cells in directions inclined with the cell edges, 
resulting in longer travel distances as compared to those of source neutrons. Therefore, the 
maximum distance a neutron travels in cel l j  is 

Bj = max X~dj/sin 0 .  i = 1 . . . . .  M,  

where Bj is in mean-free paths, X~ is the cross-section of a neutron contributing to the detector 
response Sj, dj is the maximum width of the cell j ,  and 0; is the scattering angle corresponding 
to Sj. The maximum cell width for a square mesh as that in figure 3 is encountered for cells 
that lie on the diameter of the test section, and is equal to D N  -'/2, where N is the total 
number of cells and D is the diameter. Therefore, one can write 

B = max Bj = ( D N  - ' / ' )  max Xdsin 0, 
j i 

Each detector response corresponds to a particular energy El uniquely related to the angle 0; 
according to [ 11 ]. Further, only scattering by hydrogen is recorded, resulting in E; = Eo cos ~ 
0~, where Eo is the energy of the incident neutron. Therefore, 

/3 = (DN -'/2 Eo) m a x  ~,,I(E~ - E~) '/2 = m a x  8i.  
• i 

[2l] 

Figure 6 shows the variation of 0r with energy, for the detection energy range used in the 
SENT problem, with the upper energy being (15/17)Eo, and the lowest energy being 
( l /4)Eo.  In the figure a 4 x 4 (N  = 16) mesh constructed in a 100-mm diameter test section 
was used. One can see that B is always less than unity with tendency to increase at both high 
and low energy. This gives another good reason to exclude high and low detection energies 
from the information utilized in the SENT technique. Note that for test sections smaller 
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Figure 6. Scattering distance in cell i, B~, in mean-free paths vs scattering energy or angle• 
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than 100 mm in diameter and for mesh structures finer than the 4 × 4 mesh, the value of/~ as 
indicated by [22] would be less than that shown in figure 6. 

One can conclude that, provided a reasonably fine mesh structure is used and the high- 
and low-energy neutrons are excluded, the contraction mapping requirements can be met in 
the SENT technique. Practical applications usually require fine mesh structures, while high 
detection energies are excluded to avoid oxygen scatterings and low energies are excluded to 
reduce the effect of multiple scattering. Theref6re, the contraction mapping requirements do 
not impose additional restrictions to those required by other practical and physical 
considerations. 

4.3 Near-linear problem 
Because of the exponentional nature of the matrix A, the matrix does not significantly 

change at the last stages of the SAP, where the problem is close to its final solution. In this 
case, one can consider the problem to be nearly linear and can turn to noninversion 
techniques for solving linear problems. This reduces the computational effort spent in the 
matrix inversion process. Noninversion techniques, such as the Bayesian method discussed 
by Hussein et al. (1983), adjust the solution iteratively by introducing appropriate correction 
factors and are widely used in conventional attenuation tomography where large matrices 
are encountered. In addition to computational savings, noninversion methods can be utilized 
when the inversion method does not result in a contraction mapping near the [0,1] 
boundaries. Since noninversion methods introduce slight corrections to the previous solution 
approximation, they are useful in guiding the SAP towards the near boundary solution 
without sharply bringing the solution outside [0,1 ]. It is not desirable to use noninversion 
methods all the way through the SAP in other cases. This is because the small changes 
introduced to the solution would require a large number of iterations. 

4.4 Numerical algorithm 
Figure 7 shows a flow chart outlining a numerical algorithm for solving the SENT 

inverse problem by implementing the abstract aspects discussed in the previous sections. The 
nonlinear problem is addressed through the successive approximation process (SAP) 
initiated by the zeroth approximation (initial guess). Once a solution approximation is 
available, the direct mapping (matrix A) is constructed using the single scattering model, as 
shown in section 3. This enables solving the direct problem and calculating the detector 
responses corresponding to the given solution approximation. The calculated results are then 
compared to the measured ones and a decision is made on whether the given approximation is 
an acceptable solution of the problem. The acceptability of the solution is determined by 
monitoring four norms that measure the difference between the calculation and measure- 
ments, the convergence of the SAP and the deviation of the constructed solution approxima- 
tion from both the upper and lower bounds of the interval [0,1 ]. If the solution is acceptable, 
then the error associated with the solution is estimated and the problem is terminated. 
Otherwise, the near-linearity of the problem is checked by monitoring a norm that provides a 
measure of the difference in the construct¢~l direct mappings between any two successive 
approximations. If near-linearity is not achieved, the inverse mapping is constructed using a 
regularized least-squares inversion, as discussed in section 2. Then a new solution approxi- 
mation is obtained, When near-linearity is reached, a Bayesian algorithm is used to obtain a 
new solution approximation. The Bayesian method, as discussed by Hussein et al. (1983), 
introduces a probabilistic correction to the given solution approximation, without explicitly 
constructing the inverse mapping. The new solution approximation obtained is examined and 
the two norms measuring the deviation from the upper and lower bounds of the interval [0,1 ] 
are calculated. Then, the solution is adjusted such that all its elements lie within the interval 
[0,1], in order to guide the solution for convergence within this interval. At the moment, 
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simpl e adjustment is done by setting all negative elements of the solution to zero and those 
larger than unity to one; however, a more sophisticated approach is possible. The adjusted 
approximation is then used to repeat the successive approximation process. 

5. E X P E R I M E N T A L  DESIGN 

A detailed design of an experimental setup for the SENT technique is reported by 
Hussein et al. (1984). This setup meets the requirements imposed on the SENT technique by 
the physical and mathematical considerations discussed in the previous sections. The design 
discussed is by no means the only one possible and can be altered in many ways. No attempt 
is made here to repeat the details of this design. However, the design parameters are 
discussed in view of the SENT requirements, indicating the various choices available. This 
would enable a potential user of the SENT technique to design the system to meet the 
available resources and minimize costs. The choice of the neutron source, detection system 
and associated electronics are now discussed. 

5.1 Neutron  source 

In the analysis presented in section 3, a single well-collimated beam of 14-MeV neutrons 
was assumed. This was done mainly to simplify the analysis. Here the effect of energy, 
angular distribution, geometry and intensity profile of the neutron source are examined. 

A monoenergetic 14-MeV source was used in the present work. However, it is possible, at 
least in principle, to use a source of different energy. The only restriction is that the diameter 
of the test section used is of the same order of magnitude as the mean-free path of the source 
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neutron, in order to reduce the effect of multiple scattering. One may be able to use a 
multienergetic source of known energy spectrum. However, special attention must be paid to 
excluding oxygen scattering and modifying the single scattering model to account for source 
neutrons of different energies. Since many multienergetic neutron sources are available, an 
effort should be made to tailor the SENT technique to accommodate these sources. 

The angular distribution of the neutron source directly affects the SENT technique since 
the energy-angle relationship of scattering is utilized. If the angular distribution is known, it 
can be easily accommodated by tailoring the single scattering model. Therefore, in principle, 
an isotropic source can be utilized provided that attention is given to eliminating neutron 
incidence on layers above and below the tomographic section, for example by appropriate 
shielding of the source, test section, or detectors. In choosing the geometry of the neutron 
source one has to ensure that the source is wide enough to cover the whole tomographic 
section, as shown in figure 4, in order to enable neutrons to reach each cell. 

Although a uniform beam profile is assumed in the present work, the variation of the 
profile can be easily accommodated in the single scattering model through the Wj weighting 
term in [ 15]. However, the intensity distribution of the incident beam can be measured and 
incorporated into the analysis. 

5.2 Neutron detector 
The desired characteristics of the neutron detector to be used in the SENT technique are 

basically ( 1 ) capability to measure the energy spectrum whose components are required for 
solving the inverse problem, (2) small size in order to easily relate the energy to angle of 
scattering and (3) insensitivity to gamma-rays that almost always accompany neutron 
production. Organic scintillation detectors have these characteristics. They are capable of 
measuring the energy spectrum with a relatively high efficiency even for small detectors, and 
they generally have pulse shape characteristics that enable discrimination against gamma- 
rays. The favoured organic scintillator has been NE-213 (made by Nuclear Enterprises 
Ltd.), a xylene-based liquid that exhibits good pulse shape discrimination (PSD) properties. 
N E-213 has an enhanced emission of delayed light which gives its good PSD characteristics. 
Since it is noncrystalline, NE-213 is isotropic in response to neutrons and is not sensitive to 
mechanical or thermal shocks. An NE-213 detector is inexpensive and can be easily 
constructed in the laboratory. A miniature detector (12.5-ram diameter and 12.5-mm 
length) was used in the present work. 

5.3 Electronics and discrimination against gamma-rays 
The main purpose of the electronic circuit associated with the detector is to provide a 

pulse-height distribution from which the energy spectrum can be deduced. This is usually. 
obtained by utilizing a multichannel analyzer with the channel number calibrated to provide 
the energy information. Also, a very effective discrimination electronic circuit is required to 
eliminate gamma-ray pulses from the desired neutron-pulse-height distribution. A zero- 
crossover-timing circuit similar to that of Perkins & Scott (1979) is used in the SENT 
technique. 

5.4 Unfolding of neutron spectrum 
The pulse-height distribution produced .by the detector is not directly related to the 

neutron energy spectrum. In organic scintillators, neutrons give rise to recoil protons which 
in turn cause the scintillation process. In general, there are two approaches to unfolding the 
neutron spectrum, namely, the differential and the response matrix approaches. Differential 
methods depend on the ideal rectangular response function of recoil protons to monoener- 
getic neutrons. A computer code has been devdopod by Toms (1971) using the differential 
approach and utilizing a nonlinear correlation for relating the pulse-height distribution to 
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the proton distribution. Differential methods are only suitable for small detectors where the 
rectangular response function is not significantly altered by the contribution of neutron 
multiple scattering. On the other hand, in the matrix response approach, a response matrix is 
constructed for the detector used. The response matrix can be either measured or calculated 
using the Monte Carlo method. A matrix inversion unfolding computer code such as the 
FORIST code (1975) can be used to obtain the neutron energy spectrum. 

Matrix inversion methods are more elaborate and require more computational effort as 
compared to differential methods. For the small detector used in the SENT technique, a 
differential method seems to be suitable, provided that appropriate correlations are used for 
relating the light output to the proton distribution and for accounting for the wall effect 
(neutron escape). 

5.5 Experimental results 
In the experiments presented in detail by Hussein et al. (1984), a 14-MeV continuous 

source produced by the 3H (~H, n) reaction in a small low-voltage accelerator was employed. 
An iron collimator of 350-mm effective length was used, resulting in a neutron flux of 1.8 × 
106 n/cm2/s incident on the test section located at the end of the collimator. Three full of 
water test sections of 12.7-, 23.9- and 46.8-mm diameters were located at the end of the 
collimator and the fluences of the scattered neutrons at different positions were recorded. 
Details of these measurements can be found elsewhere (Hussein 1983; Hussein et al. 1984). 
Here, only some of the results are presented in order to demonstrate how the measurements 
required by the SENT technique can be obtained experimentally. 

The energy spectrum of the incident beam was measured by locating the detector at the 
end of the collimator. The purpose of this measurement, in addition to measuring the source 
strength, was to confirm the capability of the detection system to reproduce the known 
source energy spectrum. The results of this measurement are presented in figure 8 and were 
obtained by unfolding the spectrum from the pulse-height distribution using a differential 
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method similar to that of Toms (1971 ). The spectrum depicts clearly the 14-MeV expected 
peak, indicating that the neutron spectrum is not significantly softened by the collimator 
(large energy softening would results in a wider peak). Two defects are observed in figure 8, 
namely, the negative flux below the 14-MeV peak and a small peak at 1.2 MeV. The 
negative flux is due to the anisotropy above 10 MeV of neutron scattering by protons in the 
detector, which distorts the rectangular response function of the detector. Therefore, 
neutrons of energy above 10 MeV were not considered for use in the SENT technique, since 
no correction was made to account for the anisotropy in the unfolding method. Results below 
2 MeV, as indicated by Toms (1971 ), are not considered to be reliable when a differential 
unfolding method is used, since carbon and inelastic scattering in the detector are not 
accounted for in the method. Therefore, the small peak at 1.2 MeV is not real and should be 
ignored. Therefore, the results of figure 8 were considered to be successful since the 14-MeV 
peak was clearly observed, and the source strength obtained from them was comparable to 
the expected one, as discussed by Hussein et al. (1984). 

Given the success of the direct measurement of the energy spectrum of the neutron beam, 
the detector was used to measure the spectrum of the neutrons scattered by each of the three 
test sections. The detector was located at different positions surrounding the test section and 
downstream of the neutron beam, in order to provide a sufficient number of results that could 
be utilized in the SENT technique. The details of these measurements are reported by 
Hussein et ai. (1984); however, figure 9 shows the energy spectra obtained for the three test 
sections at a specific location as compared to those calculated using a Monte Carlo 
simulation of the experiment. The results of the experiments strongly reflect the trend shown 
by the calculations; however, there is some discrepancy between the two when the numerical 
values are compared. These numerical values are important if the measurements are to be 
used in the SENT technique, since they strongly reflect the amount of the material present. 
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The numerical discrepancy is thought to be mainly due to the possible errors in the 
correlations used in the differential method to relate the light output to the proton 
distribution and the latter to the neutron distribution, since they were developed for larger 
detectors. Further effort must be made to refine these correlations before utilizing the 
differential method to provide the detector responses used in the SENT technique. The more 
reliable response-matrix methods may also be used, if the computer resources required by 
these methods are available. 

One can conclude from the experimental results presented above that, although further 
refinement of the detection system is required, the system is capable of providing the 
measurements needed by the SENT technique. The detection system is relatively simple and 
has been widely used in many applications; therefore, the experimental requirements of the 
SENT technique can be met in practical situations. 

6. RECONSTRUCTION OF PHASE DISTRIBUTION 

The algorithm developed in section 4 is applied to reconstruct the phase distribution for 
different flow regimes utilizing results of the SSM, Monte Carlo simulations and the 
experiments. The SSM results are considered to be error-free, except for round-off error, 
since the SSM is exactly the model used in the reconstruction process. Therefore, one would 
expect to exactly reconstruct the phase distribution, when the SSM results are utilized. On 
the other hand, both Monte Carlo and experimental results contain the contribution of 
multiple scattering and statistical errors. Also, the experimental results contain the errors 
introduced by the detection system, mainly unfolding errors. The effect of these different 
errors on the reconstruction process is examined in the following examples where different 
phase distributions are considered. In the following examples, unless otherwise specified, a 
100-mm diameter test section with a 4 × 4 rectangular mesh is considered, and 20 detector 
responses (measurements) are utilized and obtained using eight detectors arranged as shown 
in figure 4. In all examples, the phase distribution is presented such that the neutron beam is 
incident from the left-hand side of the test section, as is the case in figure 4. 

6.1 Annular distribution 
Figure 10(A) shows the original density (water fraction) of the annular water distribu- 

tion to be reconstructed, while figures 10(B) and 10(C) show the reconstructed phase 
distribution utilizing the SSM error-free results and those of the Monte Carlo simulation, 
respectively. The reconstructed distributions were obtained after the successive approxima- 
tion process (SAP) converged within a distance less than 10 -4, defined using an Euclidean 
norm, see Hussein et al. (1983). Similar definitions were used for the norm ]l • >1 I] that 
provides a measure of the deviation of the solution from the upper bound of the interval [0, 1 ] 
and the norm I( • <0 II that measures the deviation from the lower bound of the interval. The 
deviation between the measured and calculated detector responses is defined by the 
Euclidean norm 11 S - S ¢ II, given in the figures relative to the Euclidean norm II s U of the 
measurement vector. 

Figure 10(B) shows that the phase distribution is almost exactly reconstructed from the 
error-free results, as one would expect, indicating the success of the numerical algorithm in 
solving this ideal inverse problem. The small errors associated with the results are round-off 
errors, and the {I • > 1 II and II • < o  II norms indicate that the solution is kept inside the [0, 1 ] 
interval with a very small round-off error. 

The phase distribution reconstructed from the Monte Carlo results and shown in figure 
10(C) successfully depicts the void zone in the original distribution. However, deviation from 
the original density is observed in the cells that were partially filled. This is mainly because of 
the homogenization of the phases that results in shifting the center of scattering (position of 
average neutron scattering) and consequent adjustment of the cell's density to reproduce the 
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Figure lO. Reconstruction of annular density distribution. (A) Original water-fraction distribution, 
(p~), (B) reconstructed distribution from error-free results, and (C) reconstructed distribution from 

Monte Carlo results. 

scattering fluences recorded by the detector. This was not observed in the error-free results, 
since these results were produced using the SSM with the cells originally being homoge- 
nized. 

The unusually high error associated with the two edge cells closer to the neutron beam is 
due to the fact that these cells are heavily screened from the detectors by many other cells, 
and consequently suffer from the accumulation of errors in the screening cells. 

One can expect a significant improvement in the reconstructed density if the homogeni- 
zation effect is reduced by using a finer mesh structure. No attempt was made to reconstruct 
the phase density distribution in a finer mesh using Monte Carlo results because of the large 
computer cost involved in producing the required large number of detector responses. 
However, even for the coarse mesh structure of figure 10, the reconstructed density 
distribution depicts the original phase distribution within a reasonable error range. 

6.2 Inverted annular distribution 
Figure 1 1 shows the original and the reconstructed phase distributions. Again, one can 

see the expected success of the error-free case. The Monte Carlo reconstructed distribution is 
different from the original one because of the homogenization process. It is interesting to 
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Figure II. Reconstruction of inverted annular density distribution. (A) Original water-fraction 
distribution, (Pl), (B) reconstructed distribution from error-free results and (C) reconstructed 

distribution from Monte Carlo results. 

note, in figures 10(C) and 1 I(C), that while homogenization tends to inflate the density in 
the annular distribution, it tends to reduce the density in the corresponding cells in the 
inverted annular distribution. This is because the two distributions complement each other 
and one could expect the homogenization process to have opposite effects in the two cases. 

6.3 Stratified distribution 
The original stratified distribution considered is shown in figure 12(A) and the 

reconstructed distributions for the error-free and the Monte Carlo cases are shown in figures 
12(B) and 1 2(C), respectively. As expected, the ideal inverse problem is successfully solved. 
However, the distribution reconstructed from the Monte Carlo results underestimates the 
density distribution in the stratified section while slightly increasing the density in the void 
section. This is due to neutron rescattering caused by the longer neutron path length 
encountered in this case. Rescattering tends to bring more neutrons to the detector and 
consequently increases the detector response. This increase can be interpreted by the 
reconstruction algorithm as either an increase in the water density to cause more scattering 
or a decrease in water density to lessen the neutron attenuation, since both result in an 
increase in the detector response. This could explain the density increase in the stratified 
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Figure 12. Reconstruction of stratifled density distribution. (A) Original water-fraction distribution, 
(p~), (B) reconstructed distribution from error-free results and (C) re, constructed distribution from 

Monte Carlo results. 

section and the density decrease in the void section. Nevertheless, the stratification of the 
water phase is well depicted by the reconstructed distribution. 

6.4 Full of  water test section 

The contribution of multiple-scattered neutrons in this case is larger than in any of the 
cases considered above, since the test section is of a diameter equivalent to one mean-free 
path of neutrons in water and is fully occupied by water. Also, this case challenges the 
numerical algorithm used in the reconstruction process, since it results in a solution on the 
upper bound of the [0, 1] interval, making it difficult for the successive approximation 
process to keep the solution within this interval to achieve convergence according to the 
requirements of Appendix A. This problem can be solved, as discussed in subsection 4.1, by 
using the Bayesian method, rather than the regularized least-squares inversion method. 
Because the former method introduces small gradual corrections to the given solution 
approximation, it is useful for use in the cases where the inversion method fails to keep the 
solution within the [0, 1 ] interval, as in the casc encountered here. 

Neutron rescattering, as explained before, results in either a reduction or an increase in 
the reconstructed density. This can be observed in the present case for the distribution 
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Figure | 3. Reconstruction of "full of water" distribution. (A) Original water-fraction distribution, 
(p~), (B) reconstructed distribution from error-free results and (C) reconstructed distribution from 

Monte Carlo results. 

reconstructed from the Monte Carlo results shown in figure 13(C). While the density in 
some cells is lower than the original density, the ]l • > 1 ]1 norm has a value larger than that 
encountered in all the previous cases, indicating that the water fractions in many cells tend to 
exceed unity. However, the dominant presence of the water phase is depicted by the 
reconstructed phase distribution. 

6.5 Experimental results 
The detector responses measured experimentally for a full of water aluminum test 

section of 46.8-mm internal diameter 50.9-mm outside diameter are used in the present case 
to reconstruct its phase density distribution. The measurements were taken at four detector 
locations on one side of the test section resulting in 18 detector responses; after excluding low 
energies and high energies, in addition to those that correspond to angles of scattering from 
outside the test section. Figure 14 shows the reconstructed density distribution inside both a 
4 x 4 and a 3 x 3 mesh. In both cases, the density was underestimated for the cells that are 
closer to both the detectors and the incident neutron beam. This could be explained by the 
fact that the contribution of these cells to the detectors is larger than other cells, and 
consequently these cells tend to carry the effect of the deviation of the measurements from 
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Figure 14. Density reconstruction from experimental results. (A) Original distribution, (B) recon- 
structed distribution for a 4 x 4 mesh and {C) reconstructed distribution for a 3 x 3 mesh. 

the SSM results. In attempts to reduce the effect of this deviation, the overdetermination of 
the problem was increased by using the 18 detector responses to obtain the density in a 3 x 3 
mesh. However, no significant improvement was observed in the reconstructed distribution, 
as figure 14(C) shows. This shows that the deviation is due to systematic errors inherent in 
the measurements, rather than statistical errors. As explained in subsection 5.5, errors in the 
correlations used in the unfolding procedure seem to be responsible for the deviation between 
the numerical values of the measurements and calculations. Therefore, further refinement of 
the unfolding procedure is expected to result in a significant improvement in the 
reconstructed density distribution. The asymmetry observed in the reconstructed distribu- 
tion is due to the fact that the measurements were taken at one side of the test section and 
that the cells closer to the detector are more affected by measurement errors. Taking 
symmetrical measurements on both sides of the test section would result in a symmetrical 
distribution, but not necessarily a better one, unless the quality of the measurements 
themselves is improved. 

It should be mentioned that other experimental parameters such as the nonperfect 
collimation of the neutron beam or the nonuniformity of its profile, or the use of a small 
detector, rather than a point detector, do not seem to have a significant effect on the 
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reconstruction process, as discussed by Hussein (1983). One should also note that the 
aluminum wall of the test section has a small effect on the reconstruction process because of 
the low value of aluminum neutron cross-section at the energies considered and the small 
wall thickness used. 

6.6 Effect of regularization parameter 
As discussed in sections 2 and 4, the value of the regularization parameter ~.2 used in 

constructing the inverse mapping, has to be chosen such that it results in a reconstructed 
water fraction distribution closest to the actual distribution and lies reasonably well within 
the expected [0, 1] interval. In the examples presented above a value of r 2 equal to N 
(number of unknowns) was used for problems utilizing either the Monte Carlo or the 
experimental results (no regularization is required for error-free problems). Here, the effect 
of the value of 72 on the solution is discussed. 

The reconstruction of the annular distribution of figure 10 was done using different 
values of ~-2 and the results are summarized in table 4, with the norm II P* - P° I[ being an 
Euclidean norm defining the difference between the actual water fraction vector p° and the 
r~onstructed one p*, and the other three norms as previously defined. The table shows that 
the closest solution to the actual solution was obtained for ~.2 = 16. This was also observed for 
other problems, as shown by Hussein (1983). The table also shows that the largest deviation 
from the [0, 1 ] interval, as the norms II • < 1 II and [I • > 1 H indicate, tends to occur at small 
values of 7 "2. This is because small values of ~2 do not introduce enough regularization to 
contain the solution within the [0, 1 ] interval. Excessive regularization tends to preserve the 
nonnegativity of the solution; however, this is at the expense of further deviation from the 
actual solution and increasing departure from the unity upper limit, as table 4 shows. As 
explained by Hussein (1983), the value r 2 ~ N allows the solution domain to expand up to its 
(weak) upper bound. Allowing the solution to exceed this upper bound by using a small value 
(of 72) is not reasonable, while limiting the expansion to values below the upper bound is a 
restrictive action. Therefore, it seems natural to choose the T 2 = N value, as supported by the 
result of table 4. One last point: For all the r 2 values, the successive approximation process 
converges, indicating that the conditions for contraction mapping are not affected and the 
fixed point theorem, upon which the method of solution is based, is still applicable. 

7. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper, the fundamental aspects of solving the inverse problem of the SENT 
technique were discussed leading to a numerical algorithm for reconstructing the phase 
density distribution. The paper also discused the physical and experimental requirements of 
the technique and presented some numerical and experimental results to demonstrate the 
capabilities and limitations of the technique. The single scattering model, which is the 
workhorse of the reconstruction algorithm, was developed and compared to the more 
elaborate Monte Carlo simulations to investigate the effect of neutron multiple scattering 
and homogenization of the phases inside the fictitious cells constructed over the test section. 

Table 4. Regularization of the problem of reconstructing the arlnular 
distribution of figure 10 

NORM /T 2 0 4 8 16 32 64 128 

li O s ' ~  II 0 .1056 O. l)936 0.0595 0.0332 0 .o481 0.0655 0.0789 
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It was concluded that as long as the diameter of the test section is of the same order of 
magnitude as the mean-free path of source neutrons in water, the contribution of multiple 
scattering is not significant enough to invalidate the single scattering model. It was also 
shown that the homogenization effect can be reduced by using smaller cells. The experimen- 
tal requirements of the SENT technique were shown to be within reach of the available 
neutron source and detector technology, and indeed most of the required techniques are 
being widely used. 

While in this paper the theoretical and experimental fundamentals of the SENT 
technique were emphasized, more details are given by Hussein (1983). The method 
presented here, though developed particularly for neutron scattering is also applicable to 
gamma-ray scattering techniques as shown by Hussein & Kondic (1984). 

Although it was indicated that some refinement of the unfolding procedure used to 
obtain the required neutron energy spectra is required, the SENT technique appears to be a 
valuable tool for obtaining the phase distribution in steam-water flow systems. The 
reconstructed distributions, presented here, showed the ability of the SENT technique to 
reasonably reproduce the phase distribution. To improve the unfolding procedure, correla- 
tions relating the detector light output to the corresponding proton and neutron distributions 
need refining to accommodate the miniature detector used in the SENT technique, since 
existing correlations were based on large detectors. Alternatively, one can generate the 
response matrix of the detector and use a matrix inversion method to unfold the neutron 
energy distribution. Although a 4 × 4 rectangular mesh structure was used for reconstruct- 
ing the phase distribution, larger mesh structures can be used, as shown by Hussein (1983), 
and it is possible to tailor the technique to fit curved mesh structures. 

The SENT technique is expected to perform well in high-temperature systems, particu- 
larly if a temperature correction is introduced to the neutron cross-sections. Since fast 
neutrons easily penetrate metallic pipes, and the effect of the metal can be incorporated into 
the single scattering model, the SENT technique is also suitable for high pressure systems. 
The SENT technique is also potentially applicable to transient system since only a single 
radiation exposure is required and neutron generators of high intensity are available. Given 
the fact that neutron interactions are nucleus-based, rather than electron-based as the case 
for photons, the SENT technique can be easily extended to various gas-liquid systems, and 
can be used for composition measurements, as suggested by Hussein (1984). In short, the 
single-exposure neutron tomography technique presented here is potentially a valuable tool 
for diagnosis of multiphase flow systems. 
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A P P E N D I X  A. C O N D I T I O N S  FOR C O N V E R G E N C E  OF TH E SAP 
IN THE S E N T  P R O B L E M  

To examine the convergence of the SAP, the relationship [ ! 9] at any approximation k + 1 is 
viewed as a mapping f, of the given approximation p, to the sought approximation a,+ ~, i.e. 

ft: ak --'* Pk+l, [ A l l  
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where 

fk(Pk) " A- '  (Pk)S .  [A2] 

Since Pk and Pk+l arc both approximations to the actual solution p, and if one makes sure that 
both Pk and Pk+t belong to the set of solutions C, defined by the interval [0, 1], then the 
mapping Pk maps the set C into itself. The solution p is called the "fixed point" of the 
mapping f since 

f (p )  = p; 

that is, the image of p coincides with itself (p is kept fixed). This formulation of the SAP 
enables us to make use of the fixed point theorem (contraction theorem) to prove the 
convergence and uniqueness of the solution (see Kreyszig 1978; Curtain & Pritchard 1977, 
among others). The following version of the fixed point theorem is particularly useful for our 
problem. 

Let B be a closed subset of complete metric space Xand  the mapping fof: B ~ B be such 
that 

[A3] 

for all p~,py ~ B. Then, there exists a unique p* in B, such that 

f ( p * )  = p * .  

Moreover, p* (the fixed point) may be obtained as the limit of the sequence ~ , ) ,  where 

p, = f (p,_,), poe B. [A4] 

A lemma of the theorem states (Kreyszig 1978): A contraction mapping on a metric space is 
a continuous mapping. 

To apply the above theorem and its lemma on the SENT problem, one needs a complete 
metric space, a contraction mapping on it, and a closed ball. To define a metric space one 
needs a set and a metric on it. We take the set X of all N-dimensional vectors of real numbers 
(clearly the set C of the solution vectors, p, is a subset of X, since p is an N-component vector 
of real numbers, water fractions, in the closed interval [0, 1]). On X we define a metric d 
by 

d(x,  y) = max I xj  - Y j l ,  IA5] 
J 

where xj and yj are the j th  components of the vectors x and y, respectively, and both vectors 
belong to the set X. The space X -- (x, d)  is complete; for the proof see Sawyer (1978). The 
closed ball in the SENT problem is simply the set C defined by the closed interval [0, 1 ], 
since it forms a closed subset of X and any closed set is also a closed ball, (Kreyszig 1978). 
Now in order to make use of the fixed point theorem, one has to prove that f is a contraction 
mapping within the [0, 1 ] interval. 

To obtain the mathematical conditions for contraction mapping, consider the mapping f 
of [A2]: 

fk+J = Ai  1S, [A6] 

where A and S are as defined in section 2 and the subscript k indicates that A is evaluated 
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using the vector Pk ffi fk-]. The conditions for contraction mapping of f are 

( I f ~ + ~ - f ~ l { < = a l l p k - p k - , l l ,  0 - < a < l ,  k = 1 , 2  . . . .  [A7] 

Using the mean-value theorem, one can write 

fk+l -- fk -- J~" (Pk -- Pk-,), [AS] 

where dk is the Jacobi matrix of partial derivative of f with respect to p, estimated at a value 
Pe [Pk-l, Pk]. Therefore, 

I} fk+1 --  fk I} < ]I d~ II " II Pk --  Pk- I  l}. [A9] 

The j th  row of the Jk matrix is given by 

Jk~j ~ ~ (A-'S) 
v~,j 

[al0] 
0 = A -l ~pj A - I S ,  

where pj is the jth elcmcnt of the vector p. Using [4] of the paper, then 

Jk,j < A-1/~j A A - I S  [A l l ]  

I A- 'S - I  j - l , 2  . . . . .  N, 

where ~j is the maximum absolute value of the coefficients of the exponential terms of the 
elements of A in which P1 appears, and is equivalent to the maximum distance in mean-free 
paths a neutron travels in cell j .  In the above equation, Pk is substituted for A- ~ S since the 
Jacobi matrix is to be evaluated at Pk- NOW one can write the inequality 

I Jk I -< N [/~ I II P, II, [A 12] 

where N is the dimension of p and also is the number of rows in .lk, and 

181 ffi max I Pj I. [A13] 
J 

[A9] and [A12], the contraction mapping condition [A7] can be Using the inequalities 
restated as 

Since Pk e [Pk-l, P/t] and in the successive approximation process Pk-, and Pk ~ [0,1] (if not, 
they are adjusted before starting the new iteration), and using the norm defined by [A4], 
then {[ ~ II <-- 1. Therefore, [AI3] can be rewritten as 

0 - < . N I # I  ~ a < 1,. [A14] 

as the condition for f to be contraction mapping, where I B I as defined by [AI3] is the 
maximum distance in mean-free paths a neutron travels in any cell. 

The condition [AI4] requires the value of I B ] to be much less than unity, since the 
number N (number of unknowns), is usually large. However, if one defines a mapping fc 

HF J.2 :I-C 
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such that 

f~+, = ( c P k  - -  fk-,) / (C -- 1), [AlS] 

where c is a positive constant, then the contraction mapping conditions can be relaxed, while 
the solution of the problem does not change. This is because when the solution p is reached, 
both P k  and ft+~ approach p, and according to [AI5], also f~ approaches p. Therefore, the 
mapping f¢ is a self mapping of p and the fixed point theorem is still applicable. The 
conditions for the contraction of f~ are 

II q + ,  - fg I( =< ~ II p~ - p~_, II, k = 0,  1, 2 . . . .  [A16] 

But, 

II q + ,  - r~, II - II ~p~ - f~÷ ,  - cp~_, - f~ II / ( c  - 1)  

c II (p~ - p , + , )  - ( f ~ + ,  - f O  c - '  I t / ( c  - 1) 

=< II p ,  - p ~ - ,  il • II r=+,  - f= II / ( c  - 1) 

<lB]N/(c- l ) .  Hpk - P , - ,  II, 

[Al7] 

by employing inequalities [A9], [AI0] and [A13] in the last line. 
From inequalities [AI6] and [A 17], one can conclude that the contraction mapping of f~ 

requires 

o < I ~ I N / ( ~ -  1) <o~< 1. [A18] 

By choosing an appropriate value for c, usually larger than unity, the conditions of [AI8] 
become more relaxed compared to those of [A14]. In the SENT problem, c is taken equal to 
the number of unknowns, N. If N is sufficiently large, then condition [A18] can be reduced 
to 

0 </3 _-< a < 1. [AI9] 

Subsection 4.2 of the paper shows the physical conditions under which ~ satisfies the above 
inequality. 

The formulation of fc according to [AI5] was suggested by Ostrowski (1966) for 
insuring and improving the convergence of nonlinear iterations. 


